NEWTON'S RINGS

AIM OF THE EXPERIMENT

To form Newton's Rings and then find the radius of curvature of a given plano-convex lens

Schematic of the Experiment

Experimental Set-up to Observe Newton's Ring

$\mathrm{G} \rightarrow$ Glass plate

$L \rightarrow$ Plano convex lens
G1 \rightarrow Beam Splitter
M \rightarrow Microscope
$\mathrm{C} \rightarrow$ Focussing lens
$\mathrm{S} \rightarrow$ Source of light

EXPERIMENTAL SETUP

Newton's rings as observed under the microscope

CALCULATION

Step 1- To Find Least Count of the microscope

20 Main Scale Divisions in 1 cm

LEAST COUNT OF THE MICROSCOPE

$\mathrm{LC}=\frac{\text { Smallest Main Scale Reading }}{\text { Total no.of Vernier Divisions }}$
$\mathrm{LC}=\frac{\frac{1}{20}(\mathrm{~cm})}{50}=.001 \mathrm{~cm}$ (from previous slide)

Final Reading of a Ring

Final Reading = Main Scale Reading +(Vernier Scale Reading * Least Count)

Precautions

In order to avoid the backlash error, move the crosswire only in one direction (e.g left to right) while recording the data

Data entry in the computer

Login to the PC
\square Applications \rightarrow Accessories \rightarrow Terminal
DType "ring" (without quote) in the Terminal \& follow up the instructions

- Fit the graph with a straight line $y=a 0^{*} x$ and estimate the slope ao from the fit.

DEnter the value of slope in the terminal when it is asked for.

END

